

Warpage Improvement Analysis of ADF Scanner Paper Feeding Mechanism & Moldex3D GASIN Simulation and Verification (Report Sample)

Showing Your Talent ; Molding Your Innovation

CoreTech System Co., Ltd www.moldex3d.com Copyright © 2013 Moldex3D. All rights reserved. No. : 001 Company : Lite-on Technology Contestant : Alan Ting

Content

- > Contestant Introduction
- > Company & Product Introduction
- > Product and Mold Development Process
- > Product Development Trend and Challenge
- > CAE Application Process
- > Moldex3D Successful Application Case Study
- > Moldex3D Application Value and Benefit Analysis
- > Moldex3D Future Application

Contestant Introduction

- > Name: Alan Ting
- > Company: Lite-on Technology
- > Department: Imaging Department
- > Products in-charge: Mold development and production process optimization for Mini Projector

 Scanner
 Multi-Function Devices, etc.
- > Specialties:
 - CAE Simulation
 - Mold and injection process problems solving

Company Introduction

- Lite-On Technology Corporation was founded in 1975 as a producer of LEDs (Light-Emitting Diodes).
- > Lite-On Technology, the parent company of the Lite-On Group, was the first company in Taiwan to produce LEDs. Over the past three decades since its inception, Lite-On has vigorously penetrated the market sectors of computers, digital home products, consumer electronics, communications products, key components and sub-systems, and optoelectronic components.
- > Lite-On's outstanding research and development and industrial design capabilities provide customers with a wide range of products and services, making Lite-On the best ODM/OEM outsourcing choice for world-class companies.

Product Introduction

- > ADF Scanner is an indispensable device in the office. Its value greatly depends on the scanning speed, quality, stability, reliability, as well as price.
- > The movement of ADF Scanner can be divided to four steps: pick up, feed, scan, and eject. The whole process from picking up to ejecting could also influence scanning quality and reliability. Therefore, the flatness of the paper feed tray plays a crucial role in the function of ADF scanner.

Product and Mold Development Process

FAI: first article inspection CPK: capability of production index DVT: design verification test PVT: Production verification testing

Product Development Trend and Challenge

- > **Development Trend**
 - Scan speed is faster
 - Single page scanning became double pages scanning
- > Challenge
 - C.I.S (Contact Image Sensor), react speed is not fast enough
 - High speed cause noise
 - Precision requirement is high
 - Flatness<0.3mm
- > Common Problems
 - Flow imbalance
 - Weld line
 - Warpage
 - Uneven flatness

Why CAE?

- > Problems encountered
 - Z-displacement requirement: <0.3mm
 - Paper jammed situation
- > Short-term solution implemented
 - Process Condition Adjustment
 - Increase packing time (3.5, 5, 8sec)
 - Invalid
 - Increase packing pressure
 - Invalid
 - Adjust cooling channel temperature
 - Only improve X and Y-Displacement but have negative impact on Z-Displacement

- > Why utilize CAE Simulation Analysis
 - Utilize CAE Simulation Analysis to identify product potential problems.
 - Evaluate if traditional injection molding could improve product displacement.
 - The location of the pin in Traditional Gas-Assisted Injection Molding process usually depends on try and error method.
 Impropriate pin location will affect air permeability results.
 - Evaluate feasibility of Gas-Assisted Injection Molding Process implementation and its improvement level for displacement.
- > Expected results and objects
 - Decrease Z-Displacement to under 0.3mm
 - Evaluate proper pin locatiom
 - Improve future warpage problem
 - Shorten molding cycle time
 - Decrease injection pressure and clamping force

CAE Application Process

Moldex3D Successful Application Case Study

Background

- > Product Size
 - Length : 280 mm
 - Width : 160mm
 - Height : 60 mm
 - Thickness : 2 mm
- > Material
 - PC+ABS
- > Process Condition
 - Filling Time : 2.5 Sec
 - Melt Temperature : 260 $^\circ\!\!\mathbb{C}$
 - Mold Temperature : 80 $^\circ C$

Mesh Model

- > Mesh Type
 - BLM Solid Mesh
- > Mesh Count
 - Part Mesh:2,655,008;
 - Cold Runner Mesh:121,913
- > CPU CPU Time (4.2hr)
 - Flow: 2.9 hr
 - Pack: 1.2hr
 - Cool: 2 min
 - Warp: 6 min
- > Computer Information
 - CPU: Intel Core i7-3930K
 - (6CPU) *2
 - RAM: 32 G *2

Runner Layout

Cooling Channel Design

Analysis Items and Contents

- **1. Traditional injection molding process**
 - Understand the problems of the original design, inside temperature distribution and displacement.
- 2. Parameter adjustment
 - Explorer how adjusted parameter will affect displacement and evaluate feasibility of the traditional injection molding process.
- 3. Gas-Assisted Injection Molding Process adoption
 - Utilize Gas-Assisted Injection Molding Process to evaluate pin location and air penetration area range.
- 4. Warpage and Displacement Comparison
 - Compare displacement analysis results before and after implementing Gas-Assisted Injection Molding Process and evaluate its feasibility.
- 5. Mold trial comparison
 - Compare analysis results and mold trial results.

Original Design Analysis and Results Interpretation

Traditional injection molding process

Process Parameter

Melt Front Time 30%~98%

Generally, the end area of filling process has lower pressure due to farther flow length and temperature loss along the way. Therefore, the packing pressure is less than insufficient and will cause higher warpage. From the analysis results above, it can be told that the highlighted part will have more severe warpage or displacement.

Filling Analysis _ Internal Temperature Distribution

Based on the analysis results, the high temperature areas are mainly distributed around both corner sides and the area around the gates. The middle areas were the first areas starting packing process, therefore the temperature is relatively lower. Therefore, those areas should not be considered for pin location.

Cooling Analysis _ Temperature Distribution

Areas near the gates in the core have heat accumulation problem and the areas around the corner in the cavity have heat accumulation problem.

Moldex3D

20

Cooling Analysis _ Cooling Time

Warpage Analysis _ Total Displacement

22

Moldex3D

15.0

Scale: 3X

Warpage Analysis _ Sink Mark Index

Product surface has severe shrinkage mark

Moldex3D

Warpage Analysis _ Node Seeding and Displacement

Design Alternatives and Simulation Analysis

Process Parameter Adjustment I _ Packing Time

Attempts of Revised Design

- > Issues with original design
 - Flow imbalance (without moving gate location)
 - The areas near the gates and the end of filling have higher volumetric shrinkage because of higher temperature.
 - Adjusted packing pressure to decrease volumetric shrinkage.
 - Areas near the gates in the mold have heat accumulation phenomenon
 - Adjusted mold temperature to improve heat accumulation phenomenon.
- > Revised Design (Without modifying gate location and amount, only parameters are adjusted.
 - Revised Design 1 : Increase packing time from 3.5 sec to 5 sec (average mold temperature is 80 $^{\circ}$ C)
 - Revised Design 2 : Increase packing time from 3.5sec to 8sec (average mold temperature is 80 $^{\circ}$ C)

Comparison of Z-Displacement

From the graphs, it can be told that packing time of 3.5 sec and packing time of 8 sec have similar results. However, packing time of 5 sec has the worst flatness result.

Comparison of Warpage Displacement

Item	Хс	lisplacem	ent	Yc	lisplacem	ent	Z displacement			
Unit:mm	min	max	total	min	max	total	min	max	total	
Packing Time 3.5sec	-0.596	0.604	1.2	-1.469	1.134	2.603	-0.777	1.046	1.823	
Packing time 5sec	-0.672	0.628	1.3	-1.621	1.231	2.852	-0.885	1.223	2.108	
Packing Ttime 8sec	-0.704	0.76	1.464	-1.811	1.339	3.15	-0.87	1.11	1.98	

Design Alternatives and Simulation Analysis

Process Parameter Adjustment II _ Packing Pressure and Coolant Temperature

Attempts of Revised Design and Reasons

- > Revised Design Introduction
 - Based on the results, we can know that increasing packing time has no significant effect on warpage and flatness.
 Instead the original design with packing time of 3.5 sec has better flatness.
 - But their flatness levels are all above 0.3mm, we continue adjust packaging pressure and cooling channel temperature.

- > Revised Design
 - Revised Design III: Keep packing time as 3.5 sec and increase packing pressure (mold temperature is 80°C)
 - Revised Design IV: Keep packing time as 3.5 sec and decrease mold temperature to 18°C

Comparison of Z-Displacement

Increasing packing pressure and adjusting mold temperature have no significant effect on the flatness.

Z軸位移量比較圖(Node2,4,6,8)

Z軸位移量比較圖(Node1,3,5,7)

Moldex3D

Sum-Up

- > Through different process parameter adjustments, we have concluded:
 - Increasing packing time does not improve warpage and flatness but increase cycle time. Therefore, packing time of 3.5 sec is relatively better.
 - Increasing packing pressure does not improve warpage and flatness and has similar results with packing time of 5 sec. Therefore, this revised design will not be adopted.
 - Changing coolant to frozen water with 18 °C slightly improve X and Y displacements but has worse Z displacement. In addition, it does not improve flatness.
 - Traditional injection molding process cannot satisfy requirement on warpage. Its yield rate and surface shrinkage mark is severe, not only effecting delivery time but also dissatisfy customers' needs.
 - As the traditional injection molding process cannot fulfill the requirement of flatness being under 0.3mm, we tried to implement gas-assisted injection molding process to improve the problems.

								Z方问位移 [mm]					
			10 10 10 mm	10		900726	iNode	NodelD	保壓3.5sec	保壓5sec	保壓 8sec	加大保壓壓力	保壓3.5sec,公母 模凍水18度
		-29 38 30 22 40 5	(A	A A		1 2971 =(-40.91, -96.78.40.79) mm	1	209699	0.102	0.163	0.080	0.157	0.267
1 200000-20 3110 3.40.790 mm		-3951 30 69 6 m	40.9.3.337,40.79) mm]			TU	2	240924	0.149	0.220	0.121	0.212	0.301
2 240924+(-39 5,111 9,40.79) mm	4	T		111			3	476556	-0.526	-0.611	-0.564	-0.628	-0.576
		1 1					4	479974	-0.417	-0.493	-0.452	-0.506	-0.483
			N-2-1		I AF.	1/2	5	563313	-0.545	-0.642	-0.537	-0.653	-0.637
			a to a	1	4		6	563281	-0.371	-0.459	-0.351	-0.458	-0.455
						CALL	7	900726	0.051	0.088	0.093	0.109	0.103
							8	912971	0.068	0.104	0.134	0.121	0.082
	項目 X displacement Y												
	項目		X displa	acement	•		Y displa	cement	•		Z disp	lacement	
	項目 單位:mm	min	X displa max	acement total	改善率	min	Y displa max	cement total	改善率	min	Z disp max	lacement total	改善率
	項目 單位:mm <mark>保壓3.5sec</mark>	min -0.596	X displa max 0.604	total 1.2	改善率	min -1.469	Y displa max 1.134	cement total 2.603	改善率	min -0.777	Z disp max 1.046	lacement total 1.823	改善率
	項目 單位:mm 保 壓3.5sec 保壓5sec	min -0.596 -0.672	X displa max 0.604 0.628	total 1.2 1.3	改善率 -8.33%	min -1.469 -1.621	Y displa max 1.134 1.231	cement total 2.603 2.852	改善率 - 9 .57%	min -0.777 -0.885	Z disp max 1.046 1.223	lacement total 1.823 2.108	改善率 -15.63%
	項目 單位:mm 保壓3.5sec 保壓5sec 保壓8sec	min -0.596 -0.672 -0.704	X displa max 0.604 0.628 0.76	total 1.2 1.3 1.464	改善率 -8.33% -22.00%	min -1.469 -1.621 -1.811	Y displa max 1.134 1.231 1.339	cement total 2.603 2.852 3.15	改善率 -9.57% -21.01%	min -0.777 -0.885 -0.87	Z disp max 1.046 1.223 1.11	lacement total 1.823 2.108 1.98	改善率 -15.63% -8.61%
	項目 單位:mm 保壓3.5sec 保壓5sec 保壓8sec 加大保壓壓力	min -0.596 -0.672 -0.704 -0.689	X displa max 0.604 0.628 0.76 0.6168	total 1.2 1.3 1.464 1.3058	改善率 -8.33% -22.00% -8.82%	min -1.469 -1.621 -1.811 -1.707	Y displa max 1.134 1.231 1.339 1.218	cement total 2.603 2.852 3.15 2.925	改善率 -9.57% -21.01% -12.37%	min -0.777 -0.885 -0.87 -0.957	Z disp max 1.046 1.223 1.11 1.223	lacement total 1.823 2.108 1.98 2.18	改善率 -15.63% -8.61% -19.58%
20	項目 單位:mm 保壓3.5sec 保壓5sec 保壓8sec 加大保壓壓力 保壓3.5sec,凍水	min -0.596 -0.672 -0.704 -0.689 -0.5938	X displa max 0.604 0.628 0.76 0.6168 0.4188	total 1.2 1.3 1.464 1.3058 1.0126	改善率 -8.33% -22.00% -8.82% 15.62%	min -1.469 -1.621 -1.811 -1.707	Y displa max 1.134 1.231 1.339 1.218 0.886	cement total 2.603 2.852 3.15 2.925 2.115	改善率 -9.57% -21.01% -12.37% 18.75%	min -0.777 -0.885 -0.87 -0.957 -1.011	Z disp max 1.046 1.223 1.11 1.223 1.177	lacement total 1.823 2.108 1.98 2.18 2.188	改善率 -15.63% -8.61% -19.58% -20.02%

Design Alternatives and Simulation Analysis

Process Parameter Adjustment III _Gas-Assisted Injection Molding Process adoption

Pin Location Setup and Discussion

- > Information from traditional analysis:
 - Flow imbalance. Middle melt front firstly arrived, then packing and temperature decreasing started. The bottom areas of both left and right sides firstly complete filling process.
 - Higher temperature areas are mainly distributed in the areas around the runner and gate.
 Especially, the areas around the gate have the highest temperature.
 - Areas on both sides have bigger warpage. In addition, middle area has higher displacement so that the requirements for flatness was not fulfilled.
- As gas penetrate toward the area which is higher temperature and lower pressure, higher temperature is distributed at the areas around the gate, where is the direction the gas will be penetrating toward. Therefore, we decided to locate the pin in the areas with lower temperature, leading gas to penetrate toward the areas with higher temperature. Further, to improve warpage problems.

Moldex3D

Pin Location Setup

Filling Analysis Result _ Injection Pressure

Moldex3D

Cooling Analysis Result _ **Cooling Temperature**

Average temperature distribution ranges between 83°C and 108°C with GASIN. On the other hand, average temperature distribution ranges between 86°C and 125°C, which is about 17°C higher.

37

Warpage Analysis Result _ Sink Mark Index

Moldex3D

Warpage Analysis Result _ Z-Displacement

Comparison of Warpage Analysis Result

- > After implementing Gas-assisted injection molding, overall warpage phenomenon was significantly improved.
 - X-Displacement improve 45%
 - Y-Displacement improve 40%
 - Z-Displacement improve 64%
 - Z-Flatness is within ±0.3mmm and under 0.2mm, which fulfilled the requirement.

項目	X displacement					Y displa	acement		Z displacement			
單位:mm	min	max	total	改善率	min	max	total	改善率	min	max	total	改善率
保壓3.5sec	-0.596	0.604	1.2		-1.469	1.134	2.603		-0.777	1.046	1.823	
保壓5sec	-0.672	0.628	1.3	-8.33%	-1.621	1.231	2.852	-9.57%	-0.885	1.223	2.108	-15.63%
保壓8sec	-0.704	0.76	1.464	-22.00%	-1.811	1.339	3.15	-21.01%	-0.87	1.11	1.98	-8.61%
加大保壓壓力	-0.689	0.6168	1.3058	-8.82%	-1.707	1.218	2.925	-12.37%	-0.957	1.223	2.18	-19.58%
保壓3.5sec,凍水	-0.5938	0.4188	1.0126	15.62%	-1.229	0.886	2.115	18.75%	-1.011	1.177	2.188	-20.02%
導入氣輔	-0.368	0.2885	0.6565	45.29%	-0.7723	0.782	1.5543	40.29%	-0.3743	0.2703	0.6446	64.64%

Moldex3D

Comparison of Simulation Result and Real Product

Before Gas Entry _ Comparison of Short Shot Analysis Result I

42

Before Gas Entry _ Comparison of Short Shot Analysis Result II

After Gas Entry _ Comparison of Gas Permeation Analysis Result

The simulation analysis results correspond with the short shot result from real mold trial.

Benefit Analysis and Future Application

Moldex3D Application Value Analysis

				Mold			Traditional Injection	Filling	Packing		Cooling	Mold Open	Cycle Time
	Price per iter	Toolina	Machine Cost Rate	Repairing	Mold Trial (USD/per	Personnel (USD/per	Molding Process	2.5	3.5		22	10	38
		2	(USD/min)	(USD/per time)	Time)	day)	Gas-Assisted	Filling	Packing	Gas	Cooling	Mold Open	Cycle Time
Unit:USD	1	22,000	0.2	2,000	200	4	Molding Process	2.5	3.5	10	5	10	31

ltem	Content					
Cycle time	(38-31)/38=0.18 · Cycle time decreases 18%					
Price per time	 Cost for each cycle = Cycle time * Machine cost rate Cost with cycle time decreasing 18% = Cycle time * 18% * Ma Total savings with cycle time decreasing 18% = 18% * Machine Number Forecast If monthly product is 10,000 Pcs · total savings per year = 31 *0.18*0.2*10,000*12=133,920 USD = 3,883,680 NTD 	chine cost rate e cost rate* Product				
Trial cost	Mold trial decreases 4 times per month Trial cost per time is 200 USD \cdot so total savings per year = 4*200*12=9,600 USD \approx 278,400 NTD					
Personnel cost	2~3 people are needed and cost for one personnel per day is 4 US $12^{4}3^{4}=576$ USD = 16,704 NTD	SD				
Time cost	Working time decreases from 4 days to 1 day. Total savings = 3*12=36 working days per year					
Yield Rate	Increase from 0 % to 99%	*Estimated number				
Total Savings	33,920+9,600+576=144,096 USD $=4,178,784$ NTD only for reference.					
-		Moldex3D				

Moldex3D Future Application

> Future Application

- > To utilize Moldex3D as a platform between client and molding manufacture for better and more complete communication. Further, to find out the best product design
- > To apply Moldex3D on hot runner or RHCM designs.
- > To increase product quality and higher productivity.
- > Future Study Direction
 - > Optimization of pin location
 - > Optimization of pin pressure and time
 - > Hot Runner Temperature Control
 - > Variotherm

Thank you for your attention!

CoreTech System Co., Ltd. www.moldex3d.com