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Abstract

When injection molding long slender hollow parts
with closed ends, like test tubes, an unevenly acing
melt front around the cores results in core defiecta
pervasive problem especially when the parts are- thi
walled. Accurately predicting core deflection piabis is
accomplished by considering the distributed loadttom
core caused by the normal stress distribution gotin
the cores. In this paper, the effect of fluid etasst on
core deflection is explored by incorporating metmory
into the prediction of core deflection using thepep
convected Maxwell model. The Deborah number is then
used to represent the dimensionless amount oficgtgst
We find that melt memory significantly worsens core
deflection, and we provide a chart to help prautigirs
predict this.

Introduction

In the manufacture of long slender hollow partshwit
one closed end, the melt front advances unevewolynar
a cantilevered slender core, causing core deflectio
Where this deflection causes the core to touchctvity
wall, the part can even perforate. To prevent this|d
designers are thus interested in estimating tharmar
core deflection. In our previous study [1], an efifee 3D
numerical approach is developed to discuss theioela
between volumetric flow rate of a Newtonian meldan
core deflection, and the simulation agreed closgétii a
recent analytical solution (Giacomin and Hade, 20Q0h
especially at low flow rate, where core deflectiaries
linearly with the injection flow rate.

However, a number of important effects in the flow
of polymeric liquids, such as rod-climbing, extrtela
swell (also called die swell), tubeless siphon, atastic
recoil, demonstrate the effects of melt elasticiyd
specifically, of the normal stress differences olymeric
liquids [3]. One such significant normal streseetffis
that polymeric fluids exhibit an extra tension ajon
streamlines in addition to the shear stresses. &ktis
tension arises from the stretching and alignmenthef
polymer molecules along the streamlines. Their rttzr
motion makes the molecules tend to recoil to their
equilibrium configurations, thus the extra tensidinis
tendency for polymer molecules to snap back likéobrer

bands” demonstrates fluid memory, a manifestatibn o
polymeric fluid elasticity.

Therefore, the effect of fluid elasticity on core
deflection is to our interest. Since the amounhafmal
stress difference can be used to measure thecéhasti
the fluid, it is suggested that melt memory aresesxtra
tension along the core owing to a nonzero nornrakst
difference, and that this may worsen core deflectio
this paper, a dimensionless group Deborah number,
interpreted as the ratio of the magnitude of thestet
forces to that of the viscous forces, is adopted to
determine the fluid elasticity.

Accurately predicting core deflection problems is
accomplished by considering the distributed loadttom
core caused by the normal stress distribution gctin
the cores. Here we explore the effect of fluid ity on
core deflection by incorporating melt memory intet
prediction of core deflection, to see how melt mgmo
may affect core deflection. We then provide a chart
help practitioners predict this.

Conventional 2.5D CAE molding analysis adopts
the mid-plane model, replacing the flow geometryhwi
analysis along its mid-plane. This technology isvno
mature, computationally efficient and accurategewgly
for thin-walled plastic parts. However, for the mor
complicated problem of core deflection, we prefer t
depart from the mid-plane model. Here, we develd@
dimensional numerical approach to simulate the enev
flow and pressure around core components duringl mol
filling and we further predict the correspondingreo
deflection.

Theory

Analytical Solution[2]:

Fig. 1 illustrates a cantilevered core of constant
rectangular cross-section. We restrict our analitic
solution to the Newtonian fluid, conservatively resging
its solidification. Accordingly, we consider the ldo
filling very unevenly, with the polymer flowing dowjust
one side of the mold. Giacomin and Hade studied thi
problem analytically and discovered that core d#fhe
is governed by the dimensionless volumetric flove Q
which they calleccore deflectability. The dimensionless



core deflectionly andQ are related by:
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and whereu is Newtonian viscosityQ is volumetric
flow rate,L is core lengthEl is the core stiffness, ang,
is the gap between the mold wall and the core base.

Dimensionless core deflection is defined by:
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wherey is core deflection, and the dimensionless axial

position along the core& , is defined by
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(a) Base-gated core
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(b) Tip-gated core

Figure 1 — Base-gated (a) and tip-gated (b) core
deflection models

Three-Dimensional Numerical Approach:
In this study, the melt flow pressure during fitlits

predicted by the following numerical solution. The
governing equations to simulate transient, norhisohal
3D flow are:
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whereu is the velocity vectorT is temperature, is time,
p is pressures is the total stress tensop, is the fluid

density, 7 is the extra-stress tensdk , the thermal
conductivity, and ¢ the specific heat. In the present
work, 7 is obtained by the constitutive equation of upper
convected Maxwell model (UCM model):
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where A is the relaxation time,r is the upper
convected time derivative ofr , and G is the elastic
modulus.

The Deborah number is a dimensionless measure of
the amount of elasticity. It is the ratio of theuid
relaxation time, A, to the characteristic process time

(here, the filling time) t ;-
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wherew is the core width.

The melt pressurgduring filling is governed by Eq.
(7). Moreover, it exerts a net upward force on toee
surface. Hence the core deflection can be obtafred
the force balance:
Vo+F=0 12)
where & is the stress an& is the body force from melt
pressure.

The collocated cell-centered FVM (Finite Volume
Method)-based 3D numerical approach developed in ou
previous work is applied in this paper [4,5]. The
numerical method is basically a SIMPLE-like FVM it



improved numerical stability. Furthermore, the vob
tracking method based on a fixed framework
incorporated in the flow solver to track the evoltyimelt
front during molding.

Results and Discussions

In our previous work, the simulated core deflection
has been validated by an analytical solution pregdsy
Giacomin and Hade for a Newtonian melt. Likewise,
since the analytical solution employs several aggiams,
we simplify our 3-dimensional simulation accordingl
first by adopting a symmetric pressure distributédang
thickness direction during filling. We then restrimur
analysis to a temperature-independent Newtoniart. mel
Since polymer flowing down just one side of theecaras
considered in the analytical solution, we use ttiess
loading when the mold fills with the polymer jusiviing
beneath the slender core for our stress analygsiceS
solidification was neglected in the analytical $ian, we
output the simulation results of filling analysis the
sequential stress solver. Eq. (8) incorporates tieasfer
between the hot melt and the cold mold (includihg t
cold core), whereas the analytical solution istf@ much
simpler isothermal problem. Finally, whereas E8) (
accounts for viscous heating, the analytical sotutio
which our results are compared does not.

Fig. 1 illustrates our 3-dimensional model whose
specific dimensions are chosen arbitrarily (see Eiga)
and (b)) for comparison with a dimensionless anzit
solution for core deflection. Table 1 lists theeconaterial,
its elastic modulus and its moment, along with the
molding conditions. We use these data as the stionla
conditions for filling and core deflection analys&snd
then vary the filling time to explore different firates.
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(b) Solid mesh of cavity and slender core

Figure 2 — Model geometry: (a) Part shape and thickness
(b) Solid mesh of cavity and slender core

Table 1 — Polymer,
is conditions

core properties and molding

Molding Conditions

Polymer ABS STYLAC VA29
Core Material Copper
Melt Temperature 2257
Mold Temperature 60T
Core Elastic Modulus 1.15x10%* dyne/cm?
Core Moment of Inertia 0.16276 cm*

Since the effect of fluid elasticity on core deflen is our
main concern in this study, the Deborah number, iBe,
incorporated in our prediction of core deflectioBy
increasing De, which means lengthening the relarati
time for a specific filling time, more elasticity dbtained.
Therefore, we adopt De = 1, 10, 100 as the inddiuinf
elasticity, and De = 0 denotes no fluid elasticBjnce
elasticity was not considered in our previous satiah,
the predicted core deflection can be regarded as th
results of De = 0.

From Eqg. (10), we can see that increasing elastic
modulus G for a specific viscosity decreases the
relaxation time. This thus affects the amount of
calculated flow-induced residual stresén Eq. (9), and
then contributes to total stress exerted on the core
according to Eq. (7). After the model constants &émel
mechanical properties of the core are fixed, we tbem
select G to fix De and then sweep through a set of
interesting core deflectabilities, see Table 2.

Table 2 —Computational Domain

Core Deflectability () | Deborah Number (De) | Elastic Modulus (G: dyne/cm?)
1 9.54E+00
0.0001 10 9.54E-01
100 9.54E-02
1 9.54E+01
0.001 10 9.54E+00
100 9.54E-01
1 9.54E+02
0.01 10 9.54E+01
100 9.54E+00
1 9.54E+03
0.1 10 9.54E+02
100 9.54E+01
1 9.54E+04
1 10 9.54E+03
100 9.54E+02
1 9.54E+05
10 10 9.54E+04
100 9.54E+03

The finite De results in flow-induced residualests
contributing to total stresss exerted on the core.



Consequently, normal stress effects can be explored
core deflection. In our flow system, we call thdypter

flow direction beneath the deflecting core th&” “
direction (see Fig. 1); the direction normal to tueface

of the deflecting core they™ direction; and remaining

neutral direction theZ' direction. z,, —7,, is thus the

first normal stress difference Nand Ty =7 is the

zz

second, M For a shear flow and UCM model, ,|Ns
much smaller than I therefore, only Nis considered
in the total stress exerted on the core in ourutafion.
As the polymer filling just one side of the molcaches
the end of the slender core, the pressure loadnthe
core exerted by this fluid plus ;Nis output as the
boundary condition for the subsequent stress aisalys

Here we consider the two most common
cantilevered core conditions. Case 1 is with a f@e tip,
gated near this tip. Case 2 is also with a free tipr, but
gated near its base. Were these cores undefldotduhth
Cases 1 and 2, the stress loadings on the slendes c
would mirror one another. Thus, to approach the
analytical solution, we use the two constraintswshn
Fig. 3 to simulate Cases 1 and 2 in the stressyseml
After these stress analyses complete, the maximane ¢
deflection arising at the core’s free end is oledirfor
each different flow rate.

Fix all DOF

Base [

= Case1:

= Gated near the tip

deflection amplifies with increasin@ . This is because

at low shear rate, Ns proportional to shear rate squared,
thus there is hardly any normal stress differerffeeteon
core deflection at very lokQ . With the increase df) ,
implying increasing shear rate during filling, theelt
memory effect emerges with a remarkable increase in
core deflection. By using Fig. 5 and 6, practitieean
estimate core deflection according to their spedd

and De.
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Figure 4 — Comparison of core deflection between
numerical simulation and analytical solution whea
0

Table 3 —Predicted core deflection of core base and tip
gating for De = 0, 1, 10, 100
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Figure 3 — Settings of fixed boundary condition and
stress loading on undeflected cores in Cases Pand

Fig. 4 summarizes our previous work, comparing
core deflection between the simulation and thegical
results where De = 0, and shows that these agoselyl
in the linear regimes, whei® <0.1. In this study, melt
memory is incorporated into the prediction of core
deflection, and the predicted core deflection fothbcore
base and tip gating, for De = 1, 10, 100, are diste
Table 3. Comparing these to results in Fig. 4 dotipg
in Fig. 5 and Fig. 6 respectively for case base tid
gating yields the main results of this paper. We sae
that the core deflection increases with increaddegfor
fixed core deflectability both from Fig. 5 and 6,
demonstrating that melt memory significantly woisen
core deflection. The effect of fluid elasticity arore

Core Deflectability ()

Y (Core base)

Y (Core tip)

0.0001

3.913E-05

9.645E-05

4.935E-05

1.117E-04

4.935E-05

1.117e-04

4.505E-05

1.087E-04

0.001

3.934E-04

9.681E-04

5.102E-04

1.141E-03

5.102E-04

1.141E-03

7.315E-04

2.072E-03

4.126E-03

1.007E-02

6.415E-03

1.752E-02

6.415E-03

1.752E-02

2.430E-D02

3.993E-02

5.314E-02

1.387E-01

1.328E-01

2.267E-01

1.325E-01

2.267E-01

2.512e-01

4.638E-01

3.811E-01

9.640E-01

7.571E-01

1.461E+00

1.076E+00

2.684E+00

2.766E+00

5.207E+00

10

3.913E+00

9.642E+00

4.511E+00

1.087E+01

7.561E+00

1.815E+01

1.936E+01

3.267E+01

100

3.960E+01

9.660E+01

4.598E+01

1.187E+02

4.561E+01

1.187E+402

6.898E+01

1.314E+402




100

= o

10 -

e . L s
= o
(=] o4
E=] 0.1 r =
Q o
o
'g 0.01 f: o Core base{De=0): simulation
@ 0001 - . © Core base(De=1): simulation
8 2] i Core base(De=10): simulation
0.0001 L & Core base(De=100): simulation
0.00001
0.0001 0.001 0.01 0.1 1 10 100

Core Deflectability (¥

Figure 5 — Predicted core deflection at different De for
core base gating
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Figure 6 — Predicted core deflection at different De for
core tip gating

Conclusion

In this paper, the normal stress effects in polymer
liquids are demonstrated by exploring the effecflafi
elasticity on core deflection. We use the upperveoted
Maxwell model to explore flow-induced normal stress
and use the Deborah number to represent
dimensionless amount of elasticity. We find thatltme
memory significantly worsens core deflection, and w
provide a chart to help practitioners predict this.
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